Modelling of Human Glottis in VLSI for Low Power Architectures

نویسندگان

  • Nikhil Raj
  • R. K. Sharma
چکیده

The Glottal Source is an important component of voice as it can be considered as the excitation signal to the voice apparatus. Nowadays, new techniques of speech processing such as speech recognition and speech synthesis use the glottal closure and opening instants. Current models of the glottal waves derive their shape from approximate information rather than from exactly measured data. General method concentrate on assessment of the glottis opening using optical, acoustical methods, or on visualization of the larynx position using ultrasound, computer tomography or magnetic resonance imaging techniques. In this work, circuit model of Human Glottis using MOS is designed by exploiting fluid volume velocity to current, fluid pressure to voltage, and linear and nonlinear mechanical impedances to linear and nonlinear electrical impedances. The glottis modeled as current source includes linear, non-linear impedances to represent laminar and turbulent flow respectively, in vocal tract. The MOS modelling and simulation results of glottal circuit has been carried out on BSIM 3v3 model in TSMC 0.18 micrometer technology using ELDO simulator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Multiply-Accumulator Unit Bus Encoding Architecture for Image Processing Applications

In the CMOS circuit power dissipation is a major concern for VLSI functional units. With shrinking feature size, increased frequency and power dissipation on the data bus have become the most important factor compared to other parts of the functional units. One of the most important functional units in any processor is the Multiply-Accumulator unit (MAC). The current work focuses on the develop...

متن کامل

Algorithm-based low-power transform coding architectures: the multirate approach

In most low-power VLSI designs, the supply voltage is usually reduced to lower the total power consumption. However, the device speed will be degraded as the supply voltage goes down. In this paper, we propose new algorithmic-level techniques to compensate the increased delays based on the multirate approach. We apply the technique of polyphase decomposition to design low-power transform coding...

متن کامل

Modified 32-Bit Shift-Add Multiplier Design for Low Power Application

Multiplication is a basic operation in any signal processing application. Multiplication is the most important one among the four arithmetic operations like addition, subtraction, and division. Multipliers are usually hardware intensive, and the main parameters of concern are high speed, low cost, and less VLSI area. The propagation time and power consumption in the multiplier are always high. ...

متن کامل

Modelling and Simulation of Low-Head Hydro Turbine for Small Signal Stability Analysis in Power System

The hydro turbine dynamics have a considerable influence on the dynamic stability of power system. In the study of dynamic stability, the system is modeled by the linear differential equations (small  signal analysis). Small signal stability of power systems is needed in all conditions and only is dependent on the conditions of power system performance before commotion occurrence. This paper pr...

متن کامل

Algorithm - Based Low - Power Transform Coding Architectures - Part II :

In the companion paper, we addressed the low-power DCT/IDCT VLSI architectures of linear complexity increase based on the multirate approach. In this paper, we will discuss other aspects of the low-power design. Firstly, we consider the design of low-power architectures that can lower the power consumption at only O(log M) increase in hardware complexity. Next, we will extend the low-power DCT ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1004.3265  شماره 

صفحات  -

تاریخ انتشار 2010